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Let G be an n-vertex unicyclic molecular graph and Z(G) be its Hosoya index, let
Fn be the nth Fibonacci number. It is proved in this paper that if G has girth l then
Z(G) ≥ Fl+1 + (n − l)Fl + Fl−1, with the equality holding if and only if G is isomor-
phic to Sl

n , the unicyclic graph obtained by pasting the unique non-1-valent vertex of
the complete bipartite graph K1,n−l to a vertex of an l-vertex cycle Cl . A direct con-
sequence of this observation is that the minimum Hosoya index of n-vertex unicyclic
graphs is 2n − 2 and the unique extremal unicyclic graph is S3

n . The second minimal
Hosoya index and the corresponding extremal unicyclic graphs are also determined.

KEY WORDS: Hosoya index, unicyclic molecular graph, Fibonacci number, matching

AMS Subject Classification: 05C90

1. Introduction

Hosoya index of a graph G is the total number of its matchings, where a
matching of graph G is a subset of its edge-set that consists of edges without
common ends [1]. If denote by m(G, k) the number of the k-matchings, match-
ing with k edges, of graph G, then its Hosoya index Z(G) can be expressed as

Z(G) =
�n/2�∑

k=0

m(G, k),

where n stands for the order, the number of vertices, of G and �n/2� is the inte-
ger part of n/2. As a chemical descriptor of molecular structures, Hosoya index
has received much attention since its first introduction by Hosoya, the readers
are suggested to refer to Refs. [2–5]. Recent researches show that Hosoya index
can be employed to determine the molecular structure in the so-called inverse
structure-property problem [6]. In this case, molecular graphs with extremal
Hosoya index are of their own importance (we remark here that for acyclic
molecular graphs those that have extremal Hosoya index are one and the same
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as have extremal total π -electron energy [4], but this is not true for cyclic graphs
since Cn is the unique unicyclic graph that has maximal Hosoya index [7] but it
does not has maximal total π -electron energy when n ≥ 13 [8]).

For acyclic conjugated graphs (graphs containing perfect matching), those
that have extremal Hosoya index are characterized in [9,10]. Some results on
the ordering of acyclic conjugated molecular graphs according to their Hosoya
indices (or according to their total π -electron energies) are presented in [11].
Recently we characterize the acyclic graphs with maximal Hosoya index that
contains no perfect matchings [12]. But for cyclic graphs, the advances on this
subject are fairly few. Extremal unicyclic graphs of girth l that have minimal and
second minimal Hosoya indices are characterized in this paper, where l ≥ 3 is
any given integer. The explicit expressions of these Hosoya indices are also pre-
sented herein.

To state the main results, we define two classes of graphs at first. Let Sl
n be

the unicyclic graph obtained by pasting the center of an (n − l + 1)-vertex com-
plete bipartite graph K1,n−l (or an (n−l+1)-vertex star) to an l-cycle Cl and, Rl

n
can be obtained by joining an isolated vertex with an edge to the vertex labelled
with number 2 of an Sl

n−1, refer to figure 1.
Let Fn indicate the nth Fibonacci number. Denote by g(G) the girth of

graph G, namely the length of its shortest cycle. Our main results are

Theorem 1. Let G be a connected n-vertex unicyclic graph. If g(G) = l then
Z(G) ≥ Fl+1 + (n − l)Fl + Fl−1, with the equality holding if and only if G is
isomorphic to Sl

n.

Theorem 2. Let G be a connected n-vertex unicyclic graph. Then Z(G) ≥ 2n −
2, with the equality holding if and only if G = S3

n .

To our surprising, these extremal graphs are just the same as those that
have minimal energy, the sum of the absolute values of the eigenvalues of the
corresponding graphs.

Figure 1. Three special graphs.
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Theorem 3. Let G be a connected n-vertex unicyclic graph of girth l ≥ 4. If
G �= Sl

n, then Z(G) ≥ 2Fl+1 + (n − l + 1)(Fl + Fl−2) with equality holding if and
only if G = Rl

n.

Theorem 4. Let G be a connected n-vertex unicyclic graph. If G �= S3
n , then

Z(G) ≥ 3n − 6 with equality holding if and only if G = R3
n .

Let G be an n-vertex graph with vertices being labeled with 1, 2, . . . , n
respectively, and let A(G) stand for its adjacency matrix, (1, 0)-matrix of order
n with the (i, j)-entry equal to 1 if and only if vertex i is adjacent to vertex j .
Name B(G) = A(G) + I the neighbor matrix of graph G, where I is the unit
matrix of order n. For graph-theoretical symbols and terminologies not explic-
itly stated, we follow that of Ref. [13].

2. Minimal Hosoya index

In this section, we shall determine the minimal Hosoya indices of unicyclic
graphs and characterize the corresponding extremal graphs. Before proceeding,
we need some preliminaries. Denote by Pn the n-vertex path and Sn the n-vertex
star (complete bipartite graph K1,n−1).

Lemma 1 (2,9). Let T be an n-vertex tree. Then n = Z(Sn) ≤ Z(T ) ≤ Z(Pn) =
Fn+1, Z(Sn) < Z(T ) if and only if T �= Sn and, Z(T ) < Z(Pn) if and only if
T �= Pn.

Lemma 2. If l ≥ 3, then Z(Sl
n) = Fl+1 + (n − l)Fl + Fl−1.

Proof. Label the vertices of Sl
n as in figure 1. Then the neighbor matrix of Sl

n
is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 · · · 0 0 0 1 0 0 · · · 0 0
1 1 1 0 · · · 0 0 0 0 0 0 · · · 0 0
0 1 1 1 · · · 0 0 0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...

0 0 0 0 · · · 1 1 1 0 0 0 · · · 0 0
0 0 0 0 · · · 0 1 1 1 0 0 · · · 0 0
1 0 0 0 · · · 0 0 1 1 1 1 · · · 1 1
0 0 0 0 · · · 0 0 0 1 1 0 · · · 0 0
0 0 0 0 · · · 0 0 0 1 0 1 · · · 0 0
...

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...

0 0 0 0 · · · 0 0 0 1 0 0 · · · 1 0
0 0 0 0 · · · 0 0 0 1 0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n

,
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where the
(1,2,...,l

1,2,...,l

)
-minor is a cyclic matrix with the first row vector equal to

(1, 1, 0, . . . , 0, 1). Expanding Per(B(Sl
n)), the permanent of B(Sl

n), along the first
l rows, we get

Per(B(Sl
n)) = Per(B(Cl)) × Per(In−l) +

n−l∑

j=1

Per(Ml) × Per(Q j
n−l),

where Ml is the minor of B(Sl
n) formed by the first l rows, the first l −1 columns

and the (l + j)th column, namely

Ml =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 · · · 0 0 0 0
1 1 1 0 · · · 0 0 0 0
0 1 1 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 1 1 0
0 0 0 0 · · · 0 1 1 0
1 0 0 0 · · · 0 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

l

and Q j
n−l is an (n − l)-order matrix obtained by deleting the ( j + 1)th column

of the following (n − l) × (n − l + 1) matrix.

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
1 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

1 0 0 0 · · · 1 0
1 0 0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Noticing that Per(In−l) = 1 = Per(Q j
n−l), we have

Per(B(Sl
n)) = Per(B(Cl)) +

n∑

j=l+1

Per(Ml). (1)

If expanding Per(Ml) along its lth column, one gets

Per(Ml) = Per(B(Pl−1)) = Fl . (2)

On the other hand, if expanding Per(B(Sl
n)) according to its definition, one can

get

Per(B(Sl
n)) =

∑

σ

b1,σ (1) . . . bn,σ (n),
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where σ goes over the symmetric group of order n. In above formula, term
b1,σ (1) . . . bn,σ (n) = 0 if and only if either vertex i is not adjacent to vertex σ(i)
for some i �= σ(i) or, σ contains a cycle with length more than 2 but not equal
to l since graph Sl

n contains unique cycle which has length l. And so every term
of Per(B(Sl

n)) corresponds to a matching of Sl
n and vice versa, with only two

exceptions in which σ has a cycle of length l. Consequently,

Z(Sl
n) = Per(B(Sl

n)) − 2. (3)

Similarly,

Z(Cl) = Per(B(Cl)) − 2. (4)

Let e = uv be an edge of Cl . Then m(Cl, k) = m(Cl − e, k)+m(Cl −{u, v}, k −1)

when k ≥ 1, it follows from lemma 1 that

Z(Cl) = Z(Pl) + Z(Pl−2) = Fl+1 + Fl−1. (5)

Now, lemma 2 follows from the combination of formulas (1)–(5).

Lemma 3. Let T be an n-vertex unicyclic graph of girth l. Then Z(T ) ≥ Z(Sl
n),

the equality holds if and only if T is isomorphic to Sl
n.

proof. The lemma is evidently true when l = n, so we assume l < n in what
follows and let x be a one-degree (one-valent) vertex of Sl

n and y its maximum
degree vertex. When k ≥ 1, we have

m(Sl
n, k) = m(Sl

n − xy, k) + m(Sl
n − {x, y}, k − 1) = m(Sl

n−1, k) + m(Pl−1, k − 1).

And so,

Z(Sl
n) = Z(Sl

n−1) + Fl . (6)

Let Cl be the unique cycle of T . If T contains a one-degree vertex u at distance
at least 2 from its neareast vertex in Cl , let v be the unique neighbor of u, then
m(T, k) = m(T − uv, k) + m(T − {u, v}, k − 1) when k ≥ 1, and so Z(T ) =
Z(T − uv) + Z(T − {u, v}). Since Pl−1 is a proper subgraph of T − {u, v} and
T −{u, v} has more edges than Pl−1, it follows that Z(T −{u, v}) > Fl , and that
Z(T − uv) ≥ Z(Sl

n−1) by induction on n. Lemma 3 follows from (6) in this case.
On the other hand, if every one-degree vertex of T is at distance 1 from their
nearest vertex of Cl but Cl contains at least two vertices u and w of degree at
least 3, let v be a one-degree vertex of T and u be its neighbor, then the last two
equalities hold still. Consequently, lemma 3 follows in either case.
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Proof of theorems 1 and 2. Theorem 1 follows directly from the combination of
lemmas 2 and 3. When l ≥ 4, by lemma 2 we have,

Z(Sl
n) = Fl+1 + (n − l)Fl + Fl−1 = Fl + Fl−1 + (n − l)Fl + Fl−1

> Fl + (n − l + 1)Fl−1 + Fl−2 = Z(Sl−1
n ) > · · · > Z(S3

n)

= F4 + (n − 3)F3 + F2 = 2n − 2.

Theorem 2 follows.

3. Second minimal Hosoya index

Let G and T be two graphs of the same order. If m(G, k) ≤ m(T, k) for
every nonnegative integer k, graph G is called m-smaller than T , written as G �
T or T � G [11,14].

Lemma 4 [15]. Let Pn be a path of order n = 4s + r , where s and r are two
integers with 0 ≤ r ≤ 3. Then

Pn � P2 ∪ Pn−2 � P4 ∪ Pn−4 � · · · � P2s ∪ P2s+r � P2s+1 ∪ P2s+r−1

� P2s−1 ∪ P2s+r+1 � · · · � P3 ∪ Pn−3 � P1 ∪ Pn−1.

Let T 1,l
n be a tree obtained by joining an isolated vertex with an edge to

the (l + 1)th vertex (according to its natural labeling) of an (n − 1)-vertex path,
where l ≤ n/2 − 1, refer to figure 1. It is worth noting that T 1,0

n is the n-vertex
path Pn.

Lemma 5. If l �= 1, then Z(T 1,l
n ) > Z(T 1,1

n ).

Proof. Let u be the vertex of T 1,l
n labeled with number 1 in figure 1 and v be

its neighbor. Then l-matchings of T 1,l
n are partitioned into two different classes

according to whether it covers vertex u or not, and so

m(T 1,l
n , k) = m(Pn−1, k) + m(Pl ∪ Pn−l−2, k − 1).

When l = 0, we have m(Pn−l−2, 1) − m(Pn−3, 1) = (n − 3) − (n − 4) = 1 > 0, and
so m(T 1,0

n , 2) > m(T 1,1
n , 2). From lemma 4 it follows that Z(T 1,0

n ) > Z(T 1,1
n ). To

confirm the lemma, since m(P1 ∪ Pn−3, 2) = m(Pn−3, 2), by lemma 4 it suffices
to show that m(Pl ∪ Pn−l−2, 2) > m(Pn−3, 2) when l ≥ 2. When l = 2, with a
well-known result [16, p. 2] that m(Pn, k) = (n−k

k

)
we have

m(Pl ∪ Pn−l−2, 2) − m(Pn−3, 2) = m(P2 ∪ Pn−4, 2) − m(Pn−3, 2)

=
(

n − 5
1

)
+

(
n − 6

2

)
−

(
n − 5

2

)
= 1 > 0, (7)
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when 3 ≤ l ≤ n − 3, we have

m(Pl ∪ Pn−l−2, 2) − m(Pn−3, 2)

=
(

l − 2
2

)
+

(
l − 1

1

)(
n − l − 3

1

)
+

(
n − l − 4

2

)
−

(
n − 5

2

)

= 1 > 0. (8)

Lemma 5 follows from the combination of (7) and (8).

Let Rl
n stand for the unicyclic graph obtained by joining an isolated vertex

with an edge to the vertex of Sl
n−1 labeled with number 2, refer to figure 1. In

what follows we shall prove that among unicyclic graphs of girth l ≥ 4, Rl
n is the

unique extremal graph that has second minimal Hosoya index.

Lemma 6. Let G be an n-vertex unicyclic graph of girth l ≥ 4. If G �= Sl
n, then

Z(G) ≥ Z(Rl
n), with the equality holding if and only if G = Rl

n.

Proof. The lemma is evidently true when l ≥ n − 1 since Rl
n = Sl

n in this case,
and so we assume l ≤ n − 2 in what follows. Now G contains n − l ≥ 2 vertices
outside its unique cycle Cl . For two vertices a and b of G, we define the distance
d(a, b) between a and b to be the length of a shortest path of G from a to b and,
the distance d(a, Cl) between a vertex a /∈ V (Cl) and Cl to be min{d(a, c):c ∈
V (Cl)}. Let u be a one-degree vertex of G that is at furtherest distance from Cl
and v be its unique neighbor.

If the distance d(u, Cl) ≥ 2, then G −{u, v} contains Cl as its subgraph. On
the one hand, since Cl contains Pl as its proper subgraph and Cl contains more
edge than Pl , it follows that Z(Cl) > Z(Pl). On the other hand, when k ≥ 1 we
have m(Sl

n−1, k) + m(Pl, k − 1) = m(Rl
n, k), and so Z(Rl

n) = Z(Sl
n−1) + Z(Pl).

Therefore

Z(G) =
�n/2�∑

k=1

m(G, k) + 1 =
�n/2�∑

k=0

m(G − u, k) +
�n/2�∑

k=1

m(G − {u, v}, k − 1)

≥ Z(Sl
n−1) + Z(Cl) > Z(Sl

n−1) + Z(Pl) = Z(Rl
n).

If d(u, Cl) = 1, then v ∈ V (Cl) and Cl contains another vertex x of degree
at least 3 ( this vertex x is different from vertex v ) since G �= Sl

n. Assume that v

has maximal degree in G. In this case, G −{u, v} contains a T 1,s
l as its subgraph

and, if G �= Rl
n then the component M of G − {u, v} that contains at least two

vertices is not isomorphic to T 1,1
l . It follows from lemma 5 that Z(M) > Z(T 1,1

l ).
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And so,

Z(G) =
�n/2�∑

k=1

m(G, k) + 1 =
�n/2�∑

k=0

m(G − u, k) +
�n/2�∑

k=1

m(G − {u, v}, k − 1)

≥
�n/2�∑

k=0

m(Rl
n−1, k) +

�n/2�∑

k=1

m(M, k − 1) = Z(Rl
n−1) + Z(M)

> Z(Rl
n−1) + Z(T 1,1

l ) = Z(Rl
n).

Consequently, lemma 6 follows in either case.

Lemma 7. If n ≥ 4, then Z(Rl
n) = 2Fl+1 + (n − l + 1)(Fl + Fl−2).

Proof. Labeling Rl
n just as in figure 1 and expanding Per(B(Rl

n)) along its first
l rows, we get

Per(B(Sl
n)) = Per(B(Cl)) +

n−l−1∑

j=1

Per(Ml) + Per(Ll) + (n − l − 1)Per(Nl), (9)

where Ml is the same l-order matrix as stated in proof of lemma 2; Ll is the(1,2,...,l−1,l
1,3,4,...,l,n

)
-minor of B(Rl

n); Nl is the
( 1,2,3,...,l−1,l

1,3,4,...,l−1,l+1,n

)
-minor of B(Rl

n). If expand
Per(Ll) along its lth column, one gets

Per(Ll) = Fl−1 + Fl−2, (10)

similarly, if expand Per(Nl) along its first, (l − 1)th and lth columns, one gets

Per(Nl) = Per(B(Pl−3)) = Fl−2. (11)

Combining formula (2), (4), (5), (9) – (11) and recalling that Z(G) =
Per(B(G)) − 2 holds for every unicyclic graph, we finish our proof of lemma
7.

Proof of theorem 3. The theorem follows directly from the combination of lem-
mas 6 and 7.

Proof of theorem 4. It is not difficult to show that Z(R3
n) = 3n −6. By theorem

3, it suffices to show that Z(Rl
n) > Z(R3

n) when l ≥ 4 and that Z(G) > Z(R3
n)

when G has girth 3 but it is not isomorphic to R3
n . Let ui stand for the vertex

of Rl
n labeled with number i . When k ≥ 1, since

m(Rl
n, k) = m(Rl

n − un, k) + m(Rl
n − {un, u2}, k − 1)

= m(Sl
n−1, k) + m(Rl

n − {un, u2}, k − 1)
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and further by lemma 1 Z(Rl
n − {un, u2}) > Z(Sn−2) when l ≥ 4, according to

theorem 2 we have

Z(Rl
n) =

�n/2�∑

k=1

m(Rl
n, k) + 1 =

�n/2�∑

k=0

m(Sl
n−1, k) +

�n/2�∑

k=1

m(Rl
n − {un, u2}, k − 1)

= Z(Sl
n−1) + Z(Rl

n − {un, u2}) > Z(S3
n−1) + Z(Sn−2) = Z(R3

n).

When G has girth 3 but it is not isomorphic to R3
n , let u be a vertex of G

that is at farthest distance from C , we discuss this case in two different subcases:
d(u, C) ≥ 2 and d(u, C) = 1.

Subcase 1 d(u, C) ≥ 2. Clearly, u has unique neighbor in G, denote it by v.
Noting that Z(R3

n) = ∑�n/2�
k=1 m(R3

n, k)+1 = ∑�n/2�
k=0 m(R3

n −un−1, k)+∑�n/2�
k=1 m(R3

n
−{u3, un−1}, k − 1) = Z(R3

n−1)+ Z(P3) and that G −{u, v} contains C3 ⊃ P3, we
have

Z(G) =
�n/2�∑

k=1

m(G, k) + 1 =
�n/2�∑

k=0

m(G − u, k) +
�n/2�∑

k=1

m(G − {u, v}, k − 1)

> Z(R3
n−1) + Z(P3) = Z(R3

n).

Subcase 2 d(u, C) = 1. Let v be a vertex of C and u be one of its neigh-
bor with degree 1. Since G �= S3

n , either every vertex of C has degree at least 3
or C contains exactly two vertices of degree more than 2 and each of these two
vertices has degree at least 4, it follows that G−{u, v} contains P4 as its subgraph
in the first case and K1,3 in the second case. Therefore,

Z(G) =
�n/2�∑

k=1

m(G, k) + 1 =
�n/2�∑

k=0

m(G − u, k) +
�n/2�∑

k=1

m(G − {u, v}, k − 1)

≥ Z(R3
n−1) + min{Z(P4), Z(K1,3)} > Z(R3

n−1) + Z(P3) = Z(R3
n).

Theorem 4 follows.
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